Iron –Catalyzed Direct Arylation through Directed C-H Bond Activation

Jakob Norinder, Arimasa Matsumoto, Naohiko Yoshikai, and Eichi Nakamura

J. Am. Chem. Soc. 2008, 130, 5858-5859

Classical Palladium-Catalyzed Coupling

-Needs the Simultaneous Activation of the Substrate and the Reagent

-Question of cost and atom economy

Metal Catalyzed C-H Insertion: General Principle

Metal-Catalyzed C-H Insertion: Applications

Iron in Organic Chemistry

Iron-Catalyzed Cross-Coupling: Applications

Fürstner et al. J. Am. Chem. Soc. 2002, 124, 13856.

Iron-Catalyzed Cross-Coupling: Postulated Mechanism

Iron Catalyzed Homocoupling of Grignard Reagents

Cahiez et al. Organic Letters, 2005, 1943.

Summary

-The Palladium catalyzed cross coupling reaction is the most widely used organometallic transformation, but suffers from a low atom economy.

-Improvements in the directed C-H insertion via Pd, Ru, Rh chemistry allow atom economical transformations.

-However, These metals are rare and expensive and some industrial applications are limited due to the cost of the catalysts.

-Iron, because of its very low price and low toxicity is a very promising alternative to palladium cross-coupling.

-What about the C-H insertion iron-catalyzed cross coupling?

Iron –Catalyzed Direct Arylation through Directed C-H Bond Activation

Jakob Norinder, Arimasa Matsumoto, Naohiko Yoshikai, and Eichi Nakamura

J. Am. Chem. Soc. 2008, 130, 5858-5859

Screening of the Conditions

	catalyst (mol %)	additive (equiv)	time (h)	yield/% ^b		
entry				3	4	
1	$FeCl_3$ (15)	none	36	0	0	-
2	FeCl ₃ /bpy (15)	none	36	15	0	
3	FeCl ₃ /bpy (15)	$Cl(CH_{2})_{2}Cl(3)$	72	53	2	
4	FeCl ₃ /bpy (15)	1 (3)	24	82	9	
5	FeCl ₃ /bpv (10)	1 (2)	9	53	2	
→ 6	FeCl ₃ /phen (10)	1 (2)	9	79	16	
7	FeCl ₃ /neocuproine (10)	1(2)	24	0	0	
8	FeCl ₃ /terpy (10)	1 (2)	24	0	0	
→ 9	FeCl ₂ /phen (10)	1(2)	9	81	16	
→ <u>10</u>	$Fe(acac)_3/phen (10)$	$\overline{1}(\overline{2})$	9	83	13	
11^c	$FeCl_3/bpy$ (15)	1(3)	24	15	<1	(No TMEDA)

- PhMgBr or ZnClPh gave almost no coupling product

- The oxidation state and the counter anion of the iron show no significant effect

Screening of The Substrates and Reagents

ZnCl₂•TMEDA (3 equiv) Fe(acac)₃ (10 mol%) 1,10-phenanthroline (10 mol%) $Cl \qquad Cl \qquad 1 (2 equiv)$ THF, 0 °C

Postulated Mechanism

Conclusion

- One of the rare exemple of an Iron catalyzed C-H activation

- The reaction takes place at 0°C when all other metal catalyzed C-H activation reactions require a temperature above 80°C.

- The limitation of the reaction is the utilization of aromatic Grignard reagents: alkyl grignard do not work.

-The Iron used in catalytic, is less expensive than Zn ot Mg, used in stochiometric...